
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 268 (2003) 525–542

Estimation of power transmission to a flexible receiver from a
stiff source using a power mode approach

L. Ji*, B.R. Mace, R.J. Pinnington

Institute of Sound and Vibration Research, University of Southampton, Highfield, Southampton SO17 1BJ, UK

Received 29 July 2002; accepted 18 November 2002

Abstract

A power mode approach to estimating the vibrational power transmitted to a receiver structure by
multiple sources is reviewed. This approach is then extended to estimating the power transmitted to a
flexible receiver from a stiff source through discrete couplings. There may be both translational and
rotational coupling degrees of freedoms, and/or force and moment excitations. Approximations are
developed for the upper and lower bounds and the frequency average of the transmitted power. These
depend only on the point mobilities of the source and receiver, and thus require much less data than an
exact description. The approximations are most accurate when the mobility or stiffness mismatch of the
coupled system is large enough, e.g., the source has, on average, low mobility compared to that of the
receiver. Numerical examples are presented concerning a multi-point coupled beam/plate model.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis of vibration transmission in complex built-up structures is relevant to many
practical problems, such as occur in vehicles, aircraft structures and mechanical equipment, etc.
Often these structures are assembled from many substructures, possibly with quite different
vibration properties, joined together at their interfaces. The mismatch between the local dynamic
properties of the substructures may then present a number of challenges to predicting the
vibration response of the system. Some of these are characteristic of the so-called ‘‘mid-
frequency’’ region, for which generally accepted methodologies have not yet been fully developed.
One common arrangement consists of a stiff source and a flexible receiver. Here the ‘‘stiff’’

source is usually well-defined (i.e., deterministic) with long-wavelengths and/or low modal density,
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while the ‘‘flexible’’ receiver has relatively short-wavelengths and/or high modal density,
and its dynamic properties may have significant uncertainties. For such coupling cases
it is difficult, or even impossible, to predict the system response with a full, exact description,
although theoretically such exact solutions do exist, e.g., through a full finite element (FE)
analysis or by the conventional frequency-response-function (FRF)-based substructuring method.
Moreover, the dynamic response becomes increasingly sensitive to geometrical imperfections, so
that even a very detailed deterministic mathematical model based on the nominal system
properties may not yield a reliable response prediction. Therefore, it is generally more useful to
approximate the main properties of the system response rather than attempt to predict precisely
its details.
Various specialist methods [1–12] have been developed to approximate the dynamic response of

such complex built-up systems, especially the power transmitted to the receiver, which has been
increasingly accepted as an effective parameter to estimate the mean square response of the
receiver and hence the structure-borne sound emission, for example. However, more research is
still required due to certain limitations of these existing methods.
In a previous study [13], a power mode approach was developed for estimating the power

transmission to a flexible receiver from multiple sources. Ideal force and/or moment excitations
were assumed. Here, this approach is extended to the estimation of the power transmitted to a
flexible receiver from a stiff source through discrete point couplings. The coupling degrees of
freedom (d.o.f.) may involve both translational and rotational motions, and there may be
simultaneous force and moment excitations. The difference between this paper and Ref. [13] is
that here the influences of the dynamics of the source structure on the transmitted power are
considered.
In the next section the power mode technique is briefly reviewed for a structure with multiple

sources. In Section 3, this technique is extended to a multi-point coupled stiff source/flexible
receiver system. In the first instance, the coupling d.o.f. at the interface points are assumed to be
of the same type, e.g., the translational motion due to force coupling. Approximations are made
for the upper and lower bounds and the frequency average of the transmitted power, which
require less information than an exact description. Then a matrix scaling technique is introduced
to extend these approximations for more general cases where the coupling d.o.f. of the system may
involve different types, e.g., simultaneous translational and rotational motions. Finally, numerical
examples are presented concerning a multi-point coupled beam/plate model with force and
moment excitations.

2. Power transmission to a structure by multiple sources: review

In this section some results from Ref. [13] are reviewed. Later, these are developed for the case
of the power transmission between a stiff source and a flexible receiver.

2.1. Power mode theory

Suppose an array of N time harmonic forces at a frequency o are applied to a region of a
receiving structure whose properties are uniform and homogenous. The time-averaged power
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transmitted to the receiver can be expressed as

P ¼ 1
2
Re FH %MF
� �

¼ 1
2
FHMF; ð1Þ

where F is the vector of amplitudes of the forces, %M is the complex mobility matrix of the structure
(assumed symmetric), M ¼ Re %M

� �
is the real part of %M; and the superscript H denotes the

conjugate transpose. By matrix theories [14,15], M can be decomposed into the form

M ¼ WKWT; ð2Þ

where K is a real and non-negative diagonal matrix of the eigenvalues ln ofM; W is the orthogonal
matrix composed of the corresponding eigenvectors (in columns), so that WWT ¼ WTW ¼ I; and
the superscript T denotes the transpose. The eigenvalues are ordered such that l1 > l2 > ? > lN :
The mean value and standard deviation of these eigenvalues are given by [13]

%l ¼
PN

n¼1 Mnn

N
; ð3Þ

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mj j2
N

� %l2
r

; ð4Þ

where

Mj j2¼
XN

m¼1

XN

n¼1

M2
mn ð5Þ

is the second order norm of M:
Let the force vector F now be weighted by W so to give a new set of power mode forces whose

amplitudes are given by

Q ¼ WTF: ð6Þ

Combining Eqs. (1), (2) and (6) gives

P ¼
1

2

XN

n¼1

Qnj j2ln: ð7Þ

Eq. (7) shows that the vibrational power transmitted to the receiver by N forces can be regarded
as the power transmitted by N independent power mode contributions, each one of them being
related to only one force distribution (eigenvector) and one eigenvalue [13].
Mobility matrix eigenproperties were first used to find simple approximations of the

transmitted power in Refs. [7,9,10]. Further investigations were made in Ref. [13] to estimate
the upper and lower bounds of the transmitted power, as well as its mean value. These are given
below.

2.2. Approximations to the power transmission

Strict upper and lower bounds of the transmitted power can be given from Eqs. (6) and (7), by

Pup ¼
1

2

XN

n¼1

Fnj j2
 !

l1; ð8Þ
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Plow ¼
1

2

XN

n¼1

Fnj j2
 !

lN ; ð9Þ

where l1 and lN are the maximum and minimum eigenvalues ofM [7,9]. It is seen that the bounds
need less information than an exact description in Eq. (1). However, the range between these strict
bounds may be so large as to be of little value. Hence there is interest in approximating these
bounds to narrow the range between them.
For a short-wavelength receiver structure, the correlations between the individual excitations

can be regarded as being relatively small, at least when frequency averaged [13]. If it is also
assumed that the local driving point properties of the receiver have the same order of magnitude,
the eigenvalues ln typically are then of the same order of magnitude. As a result, both l1 and lN

will often lie within, say, one standard deviation of the mean, so that they can be simply
approximated as

l1Eð%lþ sÞ; ð10Þ

lNEð%l� sÞ; ð11Þ

where the mean value %l and standard deviation s are given by Eqs. (3) and (4). The upper and
lower bounds for the power transmitted to a short-wavelength receiver, therefore, can be simply
approximated by

P0
upE

1

2

XN

n¼1

Fnj j2
 !

ð%lþ sÞ; ð12Þ

P0
lowE

1

2

XN

n¼1

Fnj j2
 !

ð%l� sÞ: ð13Þ

For a long-wavelength receiver structure, however, individual excitations may be strongly
correlated. For example, when the response is dominated by a single resonant mode, then, at the
resonant frequency, the driving point mobility tends to be comparable to the transfer mobility,
i.e.,

Mnnj jE Mmnj j: ð14Þ

As a result, l1 tends to be much larger than the smallest eigenvalue lN : Then the lower bound in
Eq. (9) will be too conservative to be of practical value. Under such circumstances, it is more
useful to replace the lower bound by an approximation for the power associated with the first
power mode. In Ref. [13], this is approximated by

P1E
1

2N

XN

n¼1

Fn

�����
�����
2

ð%lþ sÞ: ð15Þ

It is also useful to estimate the mean value of the power over a range of frequencies. An
estimate of this frequency-averaged power can be found by taking the average over all the power
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modes, as [13]

%P ¼
N

2

1

N

XN

n¼1

Fnj j2
 !

1

N

XN

n¼1

Mnn

 !
: ð16Þ

Eq. (16) is in a very simple form and was also given in Ref. [8].
So far, the power transmitted to a receiver structure by an array of point forces has been

described in terms of upper and lower bounds and a mean value.

2.3. Combined force and moment excitations

It is known that in many cases of practical interest, vibration sources apply moments as well as
forces, and the power transmitted by moment excitations is generally greater at higher frequencies
[11,12]. Therefore it is necessary to also consider moment excitations. For such cases, however, the
elements of F (and M) have different units, and the approximations developed in the above
subsections can no longer be applied. In Refs. [10,13] a scaling technique was used to deal with
this problem of dimensional incompatibility. The main principle of this scaling technique is to
scale the mobility matrix M by a specified diagonal matrix to give a new ‘‘dimensionless’’ matrix,
and then to weight the physical force vector using the same diagonal matrix to give a new set of
forces each of which has the same units. This is briefly described below.
The scaling matrix DC is defined as a real and diagonal matrix, with the nth diagonal element

given by

DC;nn ¼
1ffiffiffiffiffiffiffiffiffi
Mnn

p ; ð17Þ

where Mnn ¼ Re %Mnn

� �
: Let M and F be scaled by DC as

MC ¼ DCMDC ; ð18Þ

FC ¼ D�1
C F: ð19Þ

It is seen that MC is now a dimensionless, real, symmetric and non-negative matrix, and the
elements of FC have the same units. Combining Eqs. (18) and (19) with (1) gives

P ¼ 1
2
FH

CMCFC : ð20Þ

Then approximations for the upper and lower bounds and the mean value of the transmitted
power can be given by Eqs. (12), (13) (or (15)) and (16), with F being replaced by FC ; and M

by MC :
Instead of Eq. (17), an alternative scaling matrix may be defined where

DN

C;nn ¼
1ffiffiffiffiffiffiffiffiffiffi
MN

nn

p ; ð21Þ

where MN

nn is the real part of the characteristic point mobility of the receiver structure, i.e., the
point mobility if the receiver structure is extended to infinity. The differences between Eqs. (17)
and (21) are that the former gives better estimates of the power while the latter requires no
detailed knowledge of the properties of the receiver structure, e.g., the boundary conditions.
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A similar scaling technique can be applied if the characteristic point mobilities for different
input points are substantially different, for example if there is simultaneous excitation of in-plane
and out-of-plane vibrations of a plate.
The power mode approach described above assumes ideal source excitations, so that it has only

limited practical applications. In the following section a similar approach will be used to estimate
the power transmitted to a flexible receiver from a stiff source through discrete couplings.

3. Power transmission between a stiff source and a flexible receiver

Suppose a source structure is coupled to a receiver structure through N discrete points. The
power transmitted from the source to the receiver can be written as

P ¼ 1
2
FH

I MRFI ; ð22Þ

where MR is the real part of the mobility matrix %MR of the receiver at the interface points before
coupling and FI is the interface force vector caused by the interaction between the source and the
receiver. By using the conventional FRF-based substructuring method [16,17], the interface force
vector is given by

FI ¼ %MS þ %MR

 ��1
Vsf ; ð23Þ

where %MS is the complex mobility matrix of the source at the interface points before coupling, and
Vsf is the free velocity vector of the source substructure at the interface points. Here free velocity
is used to define the source strength, which has the advantage of allowing simple comparisons
between different sources [8].
As a result, a general expression for the power transmission within the system can be written as

P ¼
1

2
Re VH

sf
%MS þ %MR

 ��1
h iH

%MR
%MS þ %MR

 ��1
Vsf

� �
: ð24Þ

Obviously Eq. (24) will be inconvenient if the number of interface d.o.f. is very large, and/or the
required FRF data are not known to sufficient accuracy, due to some uncertainty of the receiver
properties, for example. Approximations for the upper and lower bounds and the frequency
average power are thus of interest, especially if these require less information than an exact
description. In this section, the power mode approach is used in two stages: first, the coupling
forces are assumed to involve only translational motion at the coupling d.o.f., and secondly, there
may be both translational and rotational coupling d.o.f.

3.1. Translational coupling motion only

In this case it is assumed that the coupling d.o.f. of the source/receiver system all act in the same
direction, e.g., normal to the surface of a plate-like receiver. This can be further defined to be
where all the coupling forces and d.o.f. are dynamically similar, e.g., all out-of-plane, bending
vibrations of a flexible plate.
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3.1.1. Approximations to the upper and lower bounds of the transmitted power

Similar to Eq. (9), a strict lower bound for the transmitted power of Eq. (22) can be expressed
as

Plow ¼
1

2

XN

n¼1

FI ;n

�� ��2 !
lR

min; ð25Þ

where lR
min is the minimum eigenvalue (power mode mobility) of MR: From Eq. (23), it follows

that

XN

n¼1

FI ;n

�� ��2¼ VH
sf
%M
�1
RSVsf ; ð26Þ

where

%MRS ¼ ð %MR þ %MSÞð %MR þ %MSÞ
H ð27Þ

is given by the combination of mobility matrices of the source and the receiver. (Note that %MRS

here does not represent a mobility matrix.) It is seen that %MRS is a Hermitian matrix, and thus can
be decomposed into a diagonal form

%MRS ¼ UKRSUH: ð28Þ

Since Eq. (26) is a positive semi-definite quadratic form, KRS is a real and non-negative diagonal
matrix, and U is a unitary matrix (UU�1 ¼ U�1U ¼ I). Then a strict lower bound for

PN
n¼1 FI ;n

�� ��2
is

XN

n¼1

FI ;n

�� ��2X XN

n¼1

Vsf ;n

�� ��2 !
1

lRS
max

; ð29Þ

where lRS
max is the maximum eigenvalue of matrix %MRS; and satisfies [18]ffiffiffiffiffiffiffiffiffi

lRS
max

q
pmax

n
%MR;nn þ %MS;nn

�� ��þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

nam

X
%MR;nm þ %MS;nm

�� ��2r
: ð30Þ

Combining Eqs. (25), (29) and (30), a strict lower bound of the transmitted power is then given
by

Plow ¼

1

2

PN
n¼1 Vsf ;n

�� ��2� �
lR

min

maxn %MR;nn þ %MS;nn

�� ��þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
nam

P
%MR;nm þ %MS;nm

�� ��2q� �2
: ð31Þ

Eq. (31) implies that the power transmission is small either if the free-velocity distribution of the
source structure is proportional to the eigenvector corresponding to the largest eigenvalue of %MRS;
or if the interface force distribution is proportional to the eigenvector corresponding to the
smallest eigenvalue of MR:
It is difficult to find an expression for the upper bound of the transmitted power, similar to

Eq. (5), using the above eigendecomposition approach. However, a convenient approximation to
the maximum transmitted power can be estimated by simply assuming the mobility matrix %MS in
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Eq. (24) is zero. As a result, the upper bound of the transmitted power can be written as

P0
upE

1
2
Re VH

sf
%M
�1
R Vsf

n o
: ð32Þ

Although it is not a strict maximum, it tends to be a good, somewhat conservative
approximation which is rarely exceeded in practice. Physically Eq. (32) means that the maximum
power transmission occurs when the source can almost be treated as a set of free velocities.
A flexible receiver structure usually implies a relatively short wavelength and/or heavy damping

and also a relatively high modal density. In such cases, as mentioned above, the correlations
between the individual driving points are often relatively small, at least when frequency averaged,
so that the local driving point properties of the receiver at different coupling points can be
regarded as being uncorrelated. Under such circumstances, one can write the approximate
relations

lR
minEmin

n
MR;nn

� �
; ð33Þ

MR;mnE0; man: ð34Þ

Hence, the upper and lower bounds of the transmitted power can be approximated as

P0
upE

1

2

XN

n¼1

Vsf ;n

�� ��2
MR;nn

; ð35Þ

P0
lowE

1

2

XN

n¼1

Vsf ;n

�� ��2 !
minn MR;nn

� �
maxn j %MR;nnj þ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN � 1Þ

p �
maxn j %MS;nnj

 �2: ð36Þ

It is seen from Eqs. (35) and (36) that these approximations for the upper and lower bounds
depend only on the diagonal elements of the mobility matrices of the source and receiver.
Although these approximations are less conservative than the corresponding exact results, they
are much easier to predict since the amount of data required is substantially reduced.
From Eqs. (35) and (36), it is seen that the width of the range of power is closely related to the

mobility mismatch between the source and the receiver. The lower the mobility of the source
compared to that of the receiver, or the stiffer the source compared to the receiver, the narrower is
the range between these limits. If it is assumed that the local driving point mobilities of the
receiver points are approximately equal, or at least of comparable magnitudes, the approxima-
tions to both the upper and lower bounds of the transmitted power can be quite close to the
‘‘exact’’ value, provided that the mobility mismatch between the source and the receiver is big
enough. If the receiver structure is much more flexible than the source so as to meet the condition

max
n

%MR;nn

�� �� >> 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N N � 1ð Þ

p� �
max

n
%MS;nn

�� �� ð37Þ

the approximations to both the upper and lower limits of the power can then be very close to the
exact value. Under such circumstances, the power can actually be treated as that transmitted by a
set of free velocities Vsf ; i.e.,

PE
1

2

XN

n¼1

Vsf ;n

�� ��2 1

MR;nn

: ð38Þ
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Eq. (37) actually gives the condition under which the flexibility of the source structure itself may
be neglected, so that the power transmitted to the receiver can be regarded as that by a set of ideal
velocities, i.e., a set of point-velocities uncorrelated with each other. Therefore, provided the
mobility-mismatch of the system meets the condition of Eq. (37), the approximations developed in
Section 2 may be quite useful for estimating the power transmitted to a receiver structure which is
not flexible enough to meet the conditions of Eqs. (33) and (34).

3.1.2. Approximation to the frequency average transmitted power

In the above subsection, the upper bound is estimated by assuming that the mobilities of the
source structure at the interface points are zero, while the approximation for the lower bound was
made when both the mobility terms of the source and receiver at the interface are included. The
upper bound given in Eq. (35) tends to be more conservative than the lower bound given in
Eq. (36), especially when the local driving properties of the receiver at each coupling point are
similar. This implies that the latter approximation is likely to be closer to the exact value than the
former. It is also known that the frequency average of the real part of the point mobility of a
structure approximates that of the characteristic point mobility, i.e., the point mobility of the
equivalent infinite structure [19]. Therefore, one can write an approximation to the frequency
average of the transmitted power as

%PE
1

2

XN

n¼1

jVsf ;nj
2

 !
Re %MN

R;nn

n o
j %MN

R;nnj þ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN � 1Þ

p �
maxn j %MS;nnj

� �2; ð39Þ

where %MN

R;nn is the characteristic point mobility of the receiver structure. This relation is
particularly valid for non-tonal excitation or for tonal excitation if the modal overlap of the
receiver is large enough, i.e., if the excitation excites resonant response in at least a few receiver
modes.
Generally, Eq. (39) is accurate if the source/receiver system has a large enough mobility

mismatch. Otherwise, Eq. (39) tends to underestimate the true frequency average.

3.2. Translational and rotational coupling

In many cases of practical interest, the power transmitted to the receiver may arise partly from
the translational and partly from the rotational motions of the coupling d.o.f., e.g., due to
simultaneous force and moment excitations. The former is usually the largest, but the latter can be
substantial at higher frequencies [11,12]. Therefore, it is important to consider combined
translational and rotational motions of the coupling d.o.f.
Under such circumstances, however, Vsf ; %MS and %MR are composed of elements with different

units. The approximations made above can no longer be applied. Nevertheless, this problem of
dimensional incompatibility can be overcome by using a matrix scaling technique similar to that
of Section 2.3. This is described in the following subsections. Similar scaling approaches can be
extended for more general cases where the coupling d.o.f. are different types, e.g., the
simultaneous in-plane and out-of-plane vibrations of a structure.
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3.2.1. Approximations to the upper and lower bounds of the transmitted power

Let the mobility matrices %MS and %MR be scaled by a real diagonal matrix D0
C whose nth

diagonal element is defined as

D0
C;nn ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%MR;nn

�� ��q ð40Þ

so as to give two dimensionless matrices %M
C

S and %M
C

R as

%M
C

S ¼ D0
C
%MSD

0
C ; ð41Þ

%M
C

R ¼ D0
C
%MRD

0
C : ð42Þ

It is seen from Eq. (41) that

%MC
R;nn

�� �� ¼ 1: ð43Þ

Let FI and Vsf be weighted by D0
C to give a new set of forces and a new set of free velocities,

whose elements all have the same units, as

FC
I ¼ D0�1

C FI ; ð44Þ

VC
sf ¼ D0

CVsf : ð45Þ

The power transmission in Eq. (24) can then be re-written as

P ¼ 1
2Re VCH

sf
%M

C

S þ %M
C

R

� �h i�1H
%M

C

R
%M

C

S þ %M
C

R

� ��1

VC
sf

� �
: ð46Þ

Consequently, the approximations for the upper and lower bounds of the transmitted power
can be made in analogy to Eqs. (35) and (36), with Vsf ; %MS and %MR being replaced by VC

sf ; %M
C

S

and %M
C

R :
By replacing the terms of MC

R;nn by its maximum possible value of unity (given by Eq. (43)), the
approximations for the upper and lower bounds of the power can be further simplified as

P0
upE

1

2

XN

n¼1

VC
sf ;n

��� ���2; ð47Þ

P0
lowE

1

2

XN

n¼1

VC
sf ;n

��� ���2
 !

1

1þ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN � 1Þ

p �
maxn %MC

S;nn

��� ���� �2: ð48Þ

So far, the bounds of the power transmission for a stiff source/flexible receiver system with both
translational and rotational motions of coupling d.o.f. can be estimated by Eqs. (47) and (48).

3.2.2. Approximation to the frequency average transmitted power

A similar scaling approach can be used to approximate the frequency average of the transmitted
power. Here the scaling matrix D0N

C is used where

D0
C;nnN ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%MN

R;nn

�� ��q ; D0
C;nmN ¼ 0; nam ð49Þ

ARTICLE IN PRESS

L. Ji et al. / Journal of Sound and Vibration 268 (2003) 525–542534



and where %MN

R;nn is the characteristic point mobility of the receiver. Then the approximation for
the frequency average of the transmitted power can be written in a form similar to Eq. (39) as

%PE
1

2

XN

n¼1

VCN

sf ;n

��� ���2
 !

1

1þ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN � 1Þ

p �
maxn %MCN

S;nn

��� ���� �2; ð50Þ

where VCN

sf ;n are a new set of scaled free velocities of the source structure, given by

V
CN

sf ¼ D0N
C Vsf ð51Þ

and %MCN

S;nn is the ðn; nÞth element of the scaled matrix

%M
CN

S ¼ D0N
C

%MSD
0N
C : ð52Þ

The approximations of Eqs. (47), (48) and (50) are thus related to only the scaled point mobility
terms of the source and the receiver.

4. Numerical examples

Numerical examples are presented here to demonstrate the approach developed in Section 3.
Since many of the basic features of structures of practical concern can be reduced to relatively
simple configurations of beams and plates, the numerical model considered here is a beam/plate
system coupled by four evenly spaced points, as shown in Fig. 1. The beam is chosen to be
relatively stiff and with a low modal density compared to that of the plate. Both the beam and the
plate are simply supported for simplicity. External time harmonic force and moment excitations
act at a distance x from one end of the beam. The dimensions of the system and the coupling
positions are listed in Table 1. The material properties of the system are those of perspex, given in
Table 2. Three different plate thicknesses are used to vary the stiffness of the plate receiver. The
stiffness (mobility) mismatch of the system here is indicated by wavenumber ratios kp=kb ¼2.5, 3.5
and 5.6, corresponding to plate thicknesses of 0.010, 0.005 and 0.002m, respectively, with kp and
kb being the wavenumbers of the plate and the beam. Approximations to the transmitted power
from the beam to the plate are made under the following two circumstances: first, only
translational coupling d.o.f. are involved; secondly, both translational and rotational coupling
d.o.f. are considered. The approximate results are compared to exact results found using the
conventional FRF-based substructuring technique. A running frequency average, i.e., smoothing
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Fig. 1. Multi-point coupled beam/plate system.
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technique has been used for all figures given in this section to determine the broad features of the
transmitted power. The plate modal densities are 0.15, 0.30 and 0.74mode/Hz when the plate
thickness is 0.010, 0.005 and 0.002m, respectively. The bandwidth used in the smoothing is 10Hz
so that each band consists of a few (plate) vibration modes.

4.1. Transmitted power with translational coupling d.o.f. only

When the system is assumed to have only translational coupling d.o.f., the beam and the plate
generally rotate through different angles, and the coupling moments are zero. Under such
circumstances, the transmitted power only has contributions from the translational coupling
d.o.f., so that the estimates for the power transmitted to the plate can be found using the
expressions given in Section 3.1. Figs. 2–4 compare the exact and the approximate results for the
transmitted power, when a time harmonic force of magnitude 1 is applied to the beam, where
kp=kb ¼ 2:5; 3.5 and 5.6, respectively. It is seen clearly that the accuracy of the approximations
increases as the mobility mismatch between the beam and the plate increases, as expected. When
the plate is much more flexible than the beam, the transmitted power can be simply approximated
by that transmitted by a set of free velocities, as shown in Fig. 4.
The above upper and lower bound calculations need the point-mobilities of the plate at all the

interface d.o.f. to be known exactly. In principle, this requires detailed knowledge of the modal
properties of the plate. In many cases, however, this is impractical, or it may even be impossible to
find these values accurately. In such cases, the plate receiver may be approximated by regarding it
as extending uniformly to infinity in a manner analogous to that described in Section 3.2.2. The

upper bound can then be approximated by replacing MR;nn in Eq. (35) by Re %MN

R;nn

n o
; while the

lower bound expression of Eq. (36) becomes Eq. (39). Fig. 5 shows such approximations for the
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Table 1

System dimensions and coupling positions

Dimension sizes (m) Coupling positions (m) Excitation position (m)

Beam Length=2 x1 ¼ 0:40; x2 ¼ 0:80 x ¼ 0:73
Width=0.059 x3 ¼ 1:20; x4 ¼ 1:60
Height=0.068

Plate Length=2 ðx1; y1Þ ¼ ð0:40; 0:45Þ
Width=0.9 ðx2; y2Þ ¼ ð0:80; 0:45Þ
Thickness=0.010, 0.005, 0.002 ðx3; y3Þ ¼ ð1:20; 0:45Þ

ðx4; y4Þ ¼ ð1:60; 0:45Þ

Table 2

Material properties for the beam/plate system

Young’s modulus (GN/m2) The Poisson ratio Loss factor Density (kg/m3)

4.4 0.38 0.05 1152

L. Ji et al. / Journal of Sound and Vibration 268 (2003) 525–542536



ARTICLE IN PRESS

0 100 200 300 400 500 600 700 800 900 1000
10-6

10-5

10-4

10-3

10-2

10-1

Frequency (Hz)

P
ow

er
 (

W
)

Fig. 2. Power transmitted to the plate when only translational coupling d.o.f. are assumed, kp=kb ¼ 2:5: exact ( ,

Eq. (24)) and approximations to the upper bound (– – –, Eq. (35)), lower bound (. . . . . . , Eq. (36)) and frequency average

(——, Eq. (39)).
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Fig. 3. Power transmitted to the plate when only translational coupling d.o.f. are assumed, kp=kb ¼ 3:5: exact ( ,

Eq. (24)) and approximations to the upper bound (– – –, Eq. (35)), lower bound (. . . . . ., Eq. (36)) and frequency average

(——, Eq. (39)).
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case where kp=kb ¼ 2:5: By comparison with Fig. 2, it can be seen that this further approximation
gives reasonable results even for this case of modest wavenumber mismatch. When the plate
receiver is relatively very flexible compared to the beam, however, one needs to use only Eq. (39)
to get good estimates for the transmitted power, as shown in Figs. 3 and 4.

4.2. Transmitted power with both translational and rotational coupling d.o.f.

When the system has both translational and rotational coupling d.o.f., the translation and the
rotation @w=@y of the beam and the plate at the interface d.o.f. are equal. (There is assumed to be
no coupling between the torsion in the beam and the rotation @w=@x in the plate.) Under such a
circumstance, the transmitted power has contributions from both translational and rotational
coupling d.o.f., and thus can be approximated by the expressions described in Section 3.2. Figs. 6–
8 compare the exact transmitted power to the approximations, when a time harmonic force and
moment of magnitudes 1 and 0.5, respectively, are applied to the beam at the point x ¼ 0:73;
where kp=kb ¼ 2:5; 3.5 and 5.6, respectively. Once again the approximations become closer to the
exact values as the wavenumber ratio increases.
The plate receiver may also be simply approximated as being an infinite structure when it is

difficult to determine the exact values of the relevant point mobilities. Consequently, the upper
bound of the transmitted power can be estimated by replacing VC

sf ;n in Eq. (47) by VCN

sf ;n ; while the
lower bound is now given by Eq. (48). When the plate receiver is relatively very flexible compared
to the beam, as shown in Fig. 8, only Eq. (50) is needed to approximate the transmitted power
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Fig. 4. Power transmitted to the plate when only translational coupling d.o.f. are assumed, kp=kb ¼ 5:6: exact ( ,

Eq. (24)) and approximations to the upper bound (– – –, Eq. (35)), lower bound (. . . . . ., Eq. (36)) and frequency average

(——, Eq. (39)).
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Fig. 5. Power transmitted to the plate when only translational coupling d.o.f. are assumed and the plate is approxi-

mated as being infinite, kp=kb ¼ 2:5: exact ( , Eq. (24)) and approximations to the upper bound (– – –, Eq. (35)) and

lower bound (. . . . . ., Eq. (39)).
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Fig. 6. Power transmitted to the plate when both translational and rotational coupling d.o.f. are considered, kp=kb ¼
2:5: exact ( , Eq. (24)) and approximations to the upper bound (– – –, Eq. (47)), lower bound (. . . . . ., Eq. (48)) and

frequency average (——, Eq. (50)).
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Fig. 7. Power transmitted to the plate when both translational and rotational coupling d.o.f. are considered, kp=kb ¼
3:5: exact ( , Eq. (24)) and approximations to the upper bound (– – – , Eq. (47)), lower bound (. . . . . ., Eq. (48)) and

frequency average (——, Eq. (50)).
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Fig. 8. Power transmitted to the plate when both translational and rotational coupling d.o.f. are considered, kp=kb ¼
5:6: exact ( , Eq. (24)) and approximations to the upper bound (– – –, Eq. (47)), lower bound (. . . . . ., Eq. (48)) and

frequency average (——, Eq. (50)).
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accurately. If that is not the case, however, Eq. (47) (where VC
sf ;n ¼ VCN

sf ;n ) can be used together
with Eq. (48) to roughly approximate the broad features of the transmitted power. This is shown
in Fig. 9, where kp=kb ¼ 2:5:

5. Concluding remarks

In this paper a power mode approach to estimating the power transmitted to a receiver
structure from multiple sources was extended to the case of power transmission between a stiff
source and a flexible receiver through discrete couplings. In the first instance, the coupling d.o.f. at
the interface points were assumed to be of a dynamically similar type, e.g., the translational
motion due to force coupling. Then more general source/receiver systems were considered where
the coupling d.o.f. could be of different types, e.g., the simultaneous translational and rotational
motions. A matrix scaling technique was introduced. Approximations were developed for the
upper and lower bounds and the frequency average of the transmitted power.
These approximations were found depending only on the point mobilities of the source and

receiver, and thus the amount of data required can be reduced substantially compared to an exact
description.
This power mode approach is particularly useful when the mobility mismatch between the

source and the receiver is big enough.
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Fig. 9. Power transmitted to the plate when both translational and rotational coupling d.o.f. are considered and the

plate is approximated as being infinite, kp=kb ¼ 2:5: exact ( , Eq. (24)) and approximations to the upper bound (– – –,

Eq. (47)) and lower bound (. . . . . ., Eq. (48)).
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